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Abstract

ii

Expressions are derived for the spectral densities oT(K), @7 (K) of the
temperature and velocity structure functions of atmospheric turbulence,
and for the corresponding Born approximation far-field acoustic scattering
cross-sections, due to homogeneous isotropic stationary ensembles of
self-similar localized turbules having many different scale lengths. It is
shown that for some range Kmin < K < Kmax, the “inertial range,” the
spectral densities obey power laws with dependence K=, K=F. The
exponents (P, P,) depend only on choices of scaling relations and are
independent of turbule morphology. Only Kmin, Kmax, and the values of
the spectral densities outside the inertial range are morphology-
dependent. Expressions for Kmpin and Kmax are derived in terms of inner
and outer scale lengths in the turbule ensemble. If the turbule scale
lengths a, are chosen to be in geometric sequence (aa+1/a, = constant
independent of «), and if the power law is given as P = P, = 11/3, the
Kolmogorov spectrum in the inertial range, then not only must the turbule
velocity and temperature amplitudes scale as al/®, the usual result, but
also the turbule packing fractions must be independent of scale length.
Expressions for the structure parameters (C2, CZ) that occur in the usual
Kolmogorov spectra are obtained in terms of the turbule model
parameters. It is also shown that quasi-Gaussian spectra result for the
choice P, = P, = 0 and Gaussian turbule morphology.
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1.

Introduction

This is the second in a series of technical reports that examine a turbule
model of atmospheric turbulence and the acoustic scattering predicted by
the model. The previous report [1] laid the groundwork for this and
succeeding reports in the series. In Goedecke et al [1], the general
properties of the Born approximation far-field acoustic scattering
predicted by Monin's equation [2] were obtained. In addition, expressions
for the acoustic scattering amplitudes and cross-sections were derived for
individual model turbules of a given scale length and for their
orientational averages, and it was shown that an ensemble of randomly
oriented turbules of arbitrary morphology may be replaced by an
equivalent ensemble of spherically symmetric nonuniformly rotating
turbules, with randomly directed rotation axes.

In this report, we connect the turbule model predictions to the structure
function predictions for the case of isotropic homogeneous fully
developed steady-state atmospheric turbulence. This is an essential step
toward the ultimate goal of describing acoustic propagation and scattering
in inhomogeneous anisotropic turbulence using a turbule model. In
section 2, we construct an ensemble of self-similar turbules of many
different scale lengths, each with random location in a bounded volume V'
and with random orientation. We adopt general scaling laws in which the
number of turbules of a given scale length a, and their velocity and
temperature variation amplitudes scale according to powers of a,, and in
which the spectrum of scale lengths follows a general power law that
includes the usual fractal geometric sequence in which aq+1/a4 is
independent of a,. We also show that a kinetic energy cascade model
similar to that of Kolmogorov yields one connection among the scaling
exponents. We develop expressions for the spectral densities

o7 (K), ®Y;(K) of the temperature and velocity structure functions in
terms of these turbule model parameters. We show that a power law
scattering spectrum generally exists for some range Kmin < K < Kpayx, the
“inertial range,” in which the cross-sections each depend on K to some
power that could be different for the temperature than for the velocity
scattering. We also show that the power laws are independent of turbule
morphology, and that only Ky and Kmax and the behavior of the spectral
densities for K outside the inertial range are morphology dependent. We
derive expressions for (Kmin, Kmax) in terms of the inner and outer scale




length of the ensemble, and the characteristic widths of the spectral
densities of individual turbules. We show that, if we wish to obtain a
spectrum in which both spectra depend on K ~11/3 in the inertial range,
then for the fractal sequence only, not only must the velocity and
temperature amplitudes scale as a},/ 3, the usual result, but also the turbule
packing fractions must be scale-invariant. We show that a Gaussian
scattering spectrum requires quite different scaling exponents than a
K~11/3 spectrum. We also obtain expressions in terms of the turbule
ensemble parameters for the structure parameters (C2, CZ) that occur in
the Kolmogorov structure functions. We investigate the specific behavior
of the spectral densities versus K for two example turbule structures.

In section 3, we express the Born approximation far-field cross-sections as
functions of scattering angle 6 for acoustic scattering by the velocity and
temperature fluctuations of the turbulence derived in section 2, and show
under what conditions the cross-sections deviate appreciably from a
power law dependence on sin(6/2).

Finally, in section 4 we summarize and discuss our results and plans for
further work.




2. Turbule Model of Homogeneous Isotropic Steady-State
Atmospheric Turbulence

2.1 Model Turbules

We model turbulence contained in a volume V; as an ensemble of
self-similar stationary localized turbules of different scale lengths. On the
average, in V5 we allow N, turbules of scale length a,, @ = (1, N;), where
N is the total number of different scale lengths in the ensemble, so that
N = 4N, is the total ensemble average number of turbules in Vj, in
steady state. We assume in this report that the a,, are much smaller than
the scale length a; of the volume V.

We take q, as the largest scale length in the ensemble, and ay;, as the
smallest; these lengths define the outer and inner scales of the turbulence,
respectively. Each turbule is characterized by the general scalable static
temperature variation and solenoidal velocity fields (AT, (r), v,(r)) chosen
in the previous report in this series [1]. For turbule number n, we have

Von (r) = an X An(ﬁn)a AT% (r) = Tn(gn) (1)
where _
En = (I‘ - bn)/am (2)

by, is the “location” of the turbule, i.e., the point about which the turbule is
localized, and A, (&,,) is an unrestricted vector field.

For convenience, we allow uncorrelated locations b,,. This means that the
joint probability distribution for the locations of the N turbules may be
written as

P(b,,...,by) =p,(b,)...py(by), 3)
the product of N one-particle distributions, with

/ Bopa(b) =1,  alln. @

We also want the turbulence to be homogeneous. This means that the
ratios of the number densities of turbules of different scale lengths should
be independent of position in Vj; this requires '

Pa(b) = p(b), '~ ©)




independent of n. If we also want the turbulence to be uniform in V;, then
we must choose
b) = V1, beV;

= 0, otherwise.

An isotropic ensemble consists of randomly oriented copies of turbules of
arbitrary morphology for each scale length, and is thus characterized by
spherically symmetric envelope functions B2, B2 as defined by Goedecke
et al [1], namely,

(ITn(Ka,)?) = n*(6Ta)*B2(Kaa) @)
(Ani(Ka,)) = 0 ®)
(AniA;j(Kan» = 136,02 B2 (Kay). ©)

The T, (ys) and An;(y») are the Fourier transforms of T,,(§,,) and An;(£,),
respectively, as defined by Goedecke et al [1], namely,

Tuw) = [#ITo©),  An) = [PtV AL, (10

where the integrals are extended over all £-space, since the individual
turbules are localized and their scale lengths a,, are assumed to be much
smaller than the scale length a; of V;. Here, the expectation involves
averaging over random orientations, so the amplitudes (675, v) and the
argument of the envelope functions depend only on the scale length index
a. The envelope functions themselves are independent of a; that is, they
are the same functions of their arguments for all o This provides
self-similarity. The factors of 73 and 1/3 are inserted for convenience as in

Goedecke et al [1].

2.2 Scaling

In order to describe the complete ensemble, we assume that the quantities
(Ng, 6T, vo) scale with a,. We put

e (@)@ 0-6) o




where (8, v, v) are parameters. In addition, we must decide how to relate
the scale lengths to the index a. One relation that has been used is [3]

Qo = ale_"(a—l), >0, (12)

where p is a parameter that is determined by N;, the number of scale
lengths, and the ratio (an, /a,) of inner to outer scale lengths:

p=—(Ns—=1)"tlnm, m=an,/a,. (13)

Equation (12) implies that the scale lengths form a geometric sequence, in
which

a,/a, =azfa,=...=eH

that is, the ratio of successively smaller scale lengths is a constant whose
value lies between zero and unity. This is a kind of fractal scaling [3].

A general power law scaling relation is given by

aa =a,(1+qu(a—-1)""9, ¢>0, u>0, (14)

where here p is determined in terms of (m, ) by

p=qt(m™-1)/(Ns-1). (15)

Equations (14) and (15) actually reduce to equations (12) and (13)
respectively, when g goes to 0; so in what follows we may use just
equations (14) and (15), with ¢ > 0. We will also make use of the
Kolmogorov concept of energy transfer in fully developed (steady-state)
turbulence, in which energy is provided to the ensemble at the largest or
outer scale. The largest eddies continually form but are unstable because
of their large Reynolds numbers, and thereby continually fragment into
smaller eddies, which in turn fragment further, etc. This cascade continues
down to eddies of a size small enough to be stable, that is, to eddies whose
Reynolds numbers are of order unity. These smallest or inner scale eddies
dissipate almost all the energy that is being input at the largest scale. In
steady state, all the ensemble average quantities (Ng, va, 0T), and the
relationships like equations (12) or (14), are constant in time. By
dimensional analysis and from the fluid equations, the kinetic energy

transfer rate £, from turbules of scale length a, to thenext smaller is




E o= (C)(Na)(@3)(6To) (W2 /), (16)

where C is a constant with dimension of reciprocal volume. That is, the
energy transfer rate is proportional to the number of turbules of size a, in
V, the volume of each, the kinetic energy per unit mass v2 /2 of each, and
the characteristic rate of transfer v,/a,. The Kolmogorov model consists of
neglecting dissipation in all eddies except the smallest. This means that, in

steady state, £ Ko Is independent of o, for o = (1, Ns—1). Using equation
(11) in this model then yields one ratio among the parameters (3, v):

B=3u+2. 17)

In the atmosphere, the ratios |AT,|/Tw and v,/c,, are usually of the same
order. This implies that our turbule temperature variation amplitudes 67,
should be proportional to v, whereby we get directly from equation (11)

N=uv. (18)

On the other hand, if we apply the Kolmogorov energy cascade model to
the thermal energy constant of the turbules in our ensemble, we get for the
thermal energy transfer rate £,,, from turbules of one scale length to the
next smaller

Epa= (C')(No)(a2)(6Ta) (va/aa), (19)

where ' is a constant. This says that the energy transfer rate is
proportional to the thermal energy content of a turbule, which is
proportional to §T,. If we require this rate to be independent of a, then we
get from equations (11) and (14)

v =2v. (20)

This is equivalent to stating that 6T, is proportional to v2. We see in the
next section that these two possibilities of equations (18) and (20) yield
quite different behavior for the velocity and temperature variation
structure functions of the ensemble.

2.3 Structure Function Spectra

2.3.1 General

The velocity and temperature variation structure functions are important
quantities that characterize atmospheric turbulence [4,5]. In this section,



we obtain formulas for the spectral densities of these structure functions
from our turbule model, for isotropic homogeneous turbulence.

The temperature variation and velocity fields of the turbulence in V; are
just the superposition of those of the localized turbules in V;:

ATy(r) =) AT, (r),  vy(r) = v,,(r). | 1)

We are interested in the Fourier transforms

AT (K) = /V dre®TAT,(r), & (K) = /V Pre Kty (r).  (22)

Specifically, we wish to obtain general expressions for the spectral
densities

¢T(K) = (IATK)P),  o4(K) = (7,(K)7,K)), (@3

where the expectations () imply averaging over random turbule locations
b and random turbule orientations, as discussed in section 2.1 above.

Combination of equations (1), (2), (10), (21), and (22) yields
5,(K) = ize_ix.b"azK x An(Kay) (24)

Af’o (K) = Ze""x'bﬂafj’n(Kan). (25)
The spectral densities of equation (23) are then
$T(K) = 3 af (|Tn(Ka,)P?)
n

+ K Y ) (Ta(Kan)) 3 a2 (T (Kan))  (26)
n {#n

O(K) = €ipg€jraKpKy 3 a5 (Ang(Kan) AL (Kay)), (27)

where equation (8) was used. Here ¢,,_is the Levi-Civita symbol, and

A(K) = /V BheKbpb) (28)




is the Fourier transform of the “one-particle” location distribution of
equation (6).

In the standard treatment [4], the mean temperature in V; is assumed
equal to the remote reference temperature Too, OF fvsd3rAT0 (r)=0.We
will assume that here, in order to facilitate comparisons of our turbule
model spectra with the commonly used spectra. For simplicity we assume
that in the ensemble,

<Tn(Kan)> = £7%/26T, B (Kaa) = | Tn(Kan)|2>% , (29)

with equal numbers having the (+, —) signs. This ensures that
J, d3r AT, (r) = 0. It also takes advantage of the result of Goedecke et al

[1], that an isotropic ensemble of a given scale length may often be
replaced by an ensemble of spherically symmetric turbules. For such
turbules with a positive definite envelope function, equation (29)
automatically would be valid. With this assumption, we have

3 dd <Tn(Kan)> =0. (30)

Then, from equations (7), (9), and (26) to (30), we get

oT(K) = (1-[5(K)?) 7Y Na(dTa) a5 B2 (Kaa) (31)

3Y%(K) = (6 — KiK;)(7*/3) Y NavZal(Kao)’B}(Kas).  (32)

Note that the sums over turbules in equations (26) and (27) are replaced by
sums over size index « in equations (31) and (32), with N, included.

The factor involving | 5(K)|? in equation (31) comes from writing

Yon Tttn = 2on 2t — 2 in the second term of equation (26), and using
equations (29) and (30). In general, if [, d*rAT, (r) = 0, then T (K = 0)
must be zero; the factor (1 — | 5(K)|?) in equation (31) ensures this, since
P(K = 0) =1, because p(b) is a probability density (see eq. (28)).

It is important to note that p(K) is extremely small except for K near zero.
For example, suppose that V; is a spherical volume of radius a; centered at
the origin. Then, from equations (6) and (28)

#(K) = 3(Ka,) "3 [sin Kas — Kas cos Ka,]. (33)




Thus for large Kas, | 5(K)|? is smaller than (Kas)~* << 1. Therefore, in
the spectral density 7 (K), the | 5(K)|? factor may be dropped out, except
for very small K such that Ka, < 1. But its presence is essential in order to
comply with the assumption that [, d*7AT,(r) = 0.

This assumption is not necessary; if it is not made, then the spectrum
®T(K) will have a different behavior for K — 0 than that of equation (31).
We will investigate this in a later report.

Note that the velocity spectrum ®};(K) includes the factor of (6;; — K:K;),
characteristic for solenoidal velocities [4]. Also note that, for the bounded
envelope functions B? that will be used, the factor (K a,)? ensures that
@3 (K — 0) — 0, which is also a requirement for solenoidal velocities,
directly related to the results of Goedecke et al [1] and Monin [2] that
forward acoustic scattering due to such turbulent velocities is zero.

2.3.2 Inclusion of Scaling

In what follows, we replace the sum over size index « by an integral. This
will be valid if the number of different scale lengths in the ensemble is
large, as we shall assume. We then write

N, N ang
> = / do = / da/(da/de);  da/da = paT%a'*? 34
a=1 1 @

where the last equality results from equation (14).

From equations (31), (32), and (34) and the scaling relations (11) to (15), we
then get the following expressions for the spectral densities:

oT(K) = (1-|p(K)P) (x°N, (6T, )%al/w)a=Pr T _ (mz,z) (35)

O4(K) = (b5 — KK;)(n*N,o}a}/3p)z~ P2 (ma,z),  (36)

where (m, ) are defined by equations (13) to (15), and

z = Ka,; (37)
Ji(me,x)= | dyy’ B2 (y) (38)
mx !
P.=6+2y-8-gq, P,=6+2v—-0F—q. 39)

Here g > 0; ¢ = 0 corresponds to the fractal scaling of equation (11).




Thus the spectra of equations (35) and (36) depend on the integrals of the
generic form of equation (38). It is important to determine qualitatively
how these integrals depend on (s, m, z). In all cases, the envelope
functions Biv (y) go to zero rapidly for large y; otherwise, individual
turbules would not be localized. Also, we expect the B%(y) to be bounded
everywhere. Thus, if z is large, then Jy(mz, z) =~ Js(mzx, co) to very good
approximation, as long as the B2(y) go to zero faster than y~*~! for large
y. Similarly, if mz << 1, then Js(mz, z) = J5(0, z) to very good
approximation, as long as the y* B2 (y) — yt, witht > —1, for y — 0. Thus,
in many cases, there will exist a range of z such that

Js(mz, z) = Js(0,00) = constant (40)

to a very good approximation.

For this range of z, equations (35) and (36) show that the spectra have a
power law dependence on z and thus on K, with powers (—F,., —P,).
Conventional language defines this range of z or K as the “inertial range.”

We note that, if the powers (P,,, P,) are to be the same, then from equation
(39), we must have equation (18),

Y =v, (41)

which is what resulted from the discussion preceding equation (18), not
from that preceding equation (21). We shall adopt v = v. Then equations
(17) and (39) yield

P=P. =P,=4-v—q. (42)

2.3.3 Inertial Range Boundaries

10

The boundaries of the inertial range of  may be estimated as follows. The
integrand I, (y) of J;(mz, z) of equation (38) is y?B?(y); for s > 0 and
B2(y) that decrease monotonically faster than y~* as y increases, it has a
single maximum at y = ysm given by I} (ysm) = 0, or

Ysm = _%SB(ysm)/B/(ysm)- (43)
The integrand has a characteristic width that also depends on s and the

envelope function B(y). We define y,, by requiring that I,(ys+) be some
fraction of I(ysm). In this report we choose

Is(ys:i:) = 6_2Is(ysm), Ys— < Ysm < Ys+- (44)




Then it is clear that Js(mz, z) = J5(0,00) for mz < ys— and z > ys4. That
is, essentially pure power law spectra obtain for values of z that lie
between =3 min and z5 max, Where

T'smin ~ Ys+ Tsmax ~ Ys—/m- (45)

If £ < 5 min OF T > 5 max, the dependence of the spectra departs
significantly from that of a power law. Note (Zpmin, Zmax) for ®T(X) are in
general different than for 9}, because s is different for the two cases for
P, = P, ,and/or because the B(y) may be different. Also note that if

Tsmin = Tsmax iN equation (45), then there is no inertial range.

2.4 Morphology Dependence

It is important to examine the effects of changing the envelope functions
B?(y) that appear in the integrals J,(mz, z) of equation (38).

We may change an envelope function in several ways. One way is merely
to alter its amplitude. But that is trivial, because the previous values of the
functions ®T (K), ®?;(K) could be maintained by commensurately altering
the unknown amplitudes in equations (35) and (36).

Another way is to replace B(y) by the same functions of a “stretched”
argument, B(y) — B(ay). This is equivalent to changmg the spectrum of

scale lengths in the ensemble, such that a, — al, = aa,, and altering
(0T}, v,) appropriately to keep the same values of o7 (K), ®? ;(K) in the
inertial range. But the boundaries of the inertial range will be shifted; that
is, from equation (45), we get

Kzl)min = yp+/a; = Kpmin/a, K;)ma.x = Kpmax/a. (46)
Outside the inertial range, the spectra will be changed.

Another way is to replace a chosen B(y) by a different functional form
B'(y). Clearly, this will change the boundaries of the inertial ranges, in
general, but inside the inertial ranges, (6T}, v,) can be altered to preserve
the previous values of the spectra.

Therefore, we may conclude the following: the power law spectra in the
inertial ranges are completely insensitive to all changes in turbule
morphology, that is, alterations of the envelope functions B(y). Changes
in the spectrum of scale lengths and/or in the functional form
(morphology) of the B(y) irreducibly influence only the boundaries
(Kpmin, Kpmax) of the inertial range and the behavior of 7 (K), ®7(K)
outside the inertial range.

We will provide graphs of numerical examples in section 2.4.3. 1




24.1 Kolmogorov Spectra

12

From experimental and scaling considerations [4], the power law part of
the spectrum is expected to go like z71/3, so P = 11/3. If this dependence
were valid for all z, the spectral densities would be said to exhibit the
“Kolmogorov spectrum.”

From equations (42) and (17), this requires

1/-=1/3-—.q, B =3(1-gq). (47)

We know that ¢ > 0, since we insisted that a, get smaller as a increases.
Also, we expect that N, increases as the scale length decreases; from
equations (11) and (47), this requires ¢ < 1. It is especially interesting to
note that, for the fractal scaling (g = 0), which is often assumed [2],
equation (47) yields

v=1/3 pB=3. (48)

The v = 1/3 result follows from the usual energy cascade model, upon
requirement that the kinetic energy transfer rate per unit mass be
independent of scale length [4]. The usual cascade model does not
consider the number of eddies of each scale length, in contrast to our
model of section 2.2. It is remarkable that only with fractal scaling does
our model yield not only v = 1/3, but also 8 = 3, which corresponds to
turbule packing fractions Nya? /V; independent of scale length.

The standard structure function description of isotropic homogeneous
fully developed turbulence finds by dimensional analysis that the
temperature and velocity structure functions of the turbulence must be

given by

D, (r) = <(To(r1) - To(rz))2> = c2rop, (49)

Dyrr(r) = 73 <(v0i (ry) — v, (rz)) (UoJ' (r,) = Uy, (rz))> = Cg"'2/3v (50)
where |

r=r, —r,, r=ir|, F=r/r (51)

and (C’% , C2) are the so-called structure parameters. These are valid for
some range of r called the “inertial range” between the inner and outer




scale lengths (an,, a, ). Assuming (incorrectly, of course) that these forms
are valid for all r, the following spectral densities are easily derived:

oT(K) = 819 C2V,K~11/3 (52)
®4(K) = (6 — KiK;)(15.0 CJV.K~1F9). (53)

It is clear that these are incorrect for K — 0, but they are valid for most K.
Comparing these forms with equations (35) and (36), putting P, = P, =
11/3, neglecting | 5(K)|?> << 1 for K not near 0, and taking the values of
the integrals of equation (33), in the inertial range of K, we get the
following expressions for the structure parameters:

C; = (3.78/u)(N,a}/Vs)(8T, /a; /)2 Jg}5(0, 00), 4
Cy = (0.69/u)(N,a3/V;) (v, /a}/3)2 T3, (0, 00). (55)

Thus we have connected the structure parameters that are believed to
characterize the Kolmogorov spectrum of isotropic homogeneous
turbulence to the parameters of our scaled self-similar turbule model, an
essential step. Note that for fractal scaling (g = 0), the factor (N,a3/V;)
may be replaced by (N,a2 /V;) for any scale length , and so may the
factors (37, /a}/3, v, /a}/3). This is not the case for g # 0.

2.4.2 Quasi-Gaussian Spectrum

Gaussian spectra involving a single scale length have been used fairly
often [5,6]; we illustrate this for an isotropic ensemble of turbules of a
given scale length in Goedecke et al [1]. It is interesting to note that our
turbule ensemble model, containing many scale lengths, allows spectra for
oT(K), ®7;(K) that are Gaussian for most K, for special choices of the
envelope function (ég ,B2).In particular, if in equations (35) and (36) we
put

P.=P,=0, By =y ¥  Bly)=e¥2 (56

we get

2

oT(K) = (1—|#(K)[?)(constant)(e™=*/? — ¢~
®Y(K) = (6;; — KiK;)(constant)(e™™%"/2 = ¢~

)s (57)
). (58)

13




24.3 Examples
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For K — 0 and for K — oo, these go to zero, as they should; but, for

z = Ka, >> 1, they go to simple Gaussians involving the inner scale
length ay,, since mz = Kay,. These are a special case of a power law
spectrum with P = 0 for the “inertial range” of K, that is, for mz <<1
and z >> 1.

From equations (17) and (39)(, the scaling exponents must then satisfy

f=14-3¢>0, v=y=4-—q. (59)

If we were to choose v = 1/3 as in the Kolmogorov spectrum with fractal
scaling, this again yields § = 3, but requires ¢ = 11/3, a rather steep power
law for the length scales in the ensemble (see equation (14)).

It is important to give some examples using specific envelope functions, in
order to illustrate some of the results of the last several sections. We will
do this for the (quasi) Kolmogorov spectra, having dependence z /3 in
the inertial range.

In Goedecke et al [1], we considered two example envelope functions, a
Gaussian and the Fourier transform of an exponential:

B y)=e¥/2,  B2(y)=(1+y2/12)7C. (60)

The factor 12 in B2(y) ensures that turbules of the same scale length have
the same RMS radius [1]. For P = 11/3, we consider the normalized
spectral densities

Fp(z) = 273 Jy/5(ma, )/ J3/3(0, 00), (61)

Fy(z) = a3 J14/5(mz,z)/ Jras3(0,00), (62)
in which we use the same B(y) for both temperature and velocity spectra,
for convenience. These functions are the factors in equations (35) and (36)

that determine the boundaries of the inertial ranges of K and the behavior
of 7 (K), ©7;(K) outside the inertial ranges.

From equation (38), we have
J¢(mz,z) = / dy yse_y2/2, (63)

Js(mz,z) = / “dyyt(1+92/12)70. (64)




Figure 1. Normalized
isotropic homogeneous
ensemble temperature
spectra for m = 1072 as
functions of outer scale
size parameter ka, .

Figure 2. Normalized
isotropic homogeneous
ensemble temperature
spectra for m = 107* as
functions of outer scale
size parameter ka, .

These integrals were evaluated for s = (8/3, 14/3), for m = (1073,107%),
which are realistic values for the ratio a,, /a, of inner to outer scale length.
That is, inner scale lengths may be of the order of millimeters, while outer

scale lengths may be of the order of tens to hundreds of meters.

Figures 1 and 2 are plots of log F? and log F¢ versus log z for m = 1073
and 10™4, respectively; figures 3 and 4 are plots of log F{ and log F¢
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Figure 3. Normalized
isotropic homogeneous
ensemble velocity spectra
for m =10~ as functions
of outer scale size
parameter ka, .

Figure 4. Normalized
isotropic homogeneous
ensemble velocity spectra
for m = 107 as functions
of outer scale size
parameter ka, .
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versus log z for m = 10~3 and 1074, respectively. The plots, of course,
coincide in the common portions of their inertial ranges; as discussed
earlier, this coincidence can always be achieved for the actual spectra, for

any choices of the envelope functions, by adjusting the (unknown)

parameters (67, v, ). But the exponential and Gaussian envelopes yield
slightly different inertial range boundaries, quite different behavior for
T > Tsmax, and the same behavior but different values for z < Zsmin.
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We may use the results of section 2.3.3 to estimate the inertial range
boundaries, and compare the estimates with figures 1 to 4. Using
equations (43) and (60), we get

yl =82 ye = 121 - s/12)1/2 (65)
sm sm

for the (Gaussian, exponential) envelopes, respectively. Then by numerical
-solution of equation (44), using equation (45), we obtain the following
inertial range boundaries for the temperature spectra, with s = 8/3:

z9.,.~319, z%. ~049/m (66)
Toin ~ 445, x5, ~052/m. (67)

For the velocity spectra, with s = 14/3, the corresponding boundaries are

z9.,.~370, z%. ~094/m (68)
Toin 634, z7.. ~1.08/m. » (69)

These results compare reasonably well with the boundaries apparent in
figures 1 to 4.

Based on the discussion in section 2.4, if we stretch the argument of the
envelope functions (B(y) — B(ay)) or, equivalently, change the length
scales (aq — aay), then the boundaries (Kpin, Kmax) Of the inertial ranges
of K change according to equation (46). That is, if we knew or assumed a
value of a,, then we would get from z = Ka, and equation (66)

K!I

min

~319/a,, K. ~049/ma, =0.49/man, (70)

and similarly from equations (67) and (69). If we then change a, by
a, — aa,, we get

Kg

min

~3.19/aa, = KJ, [a,etc. (71)
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3. Acoustic Scattering
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For an isotropic homogeneous turbulence in a volume V., the far-field
Born approximation differential cross-section for scattering of an acoustic
plane wave is given by [4]

5'(f') =0y (F) + v (f')’ (72)

where
G.(F) = (k2/4nTw)? cos? 00T (K) (73)
7y(t) = (k?/2mco0)? cos® 0)%,‘]??]'@% (K); (74)
and here, )
K =kt -k, K = |K| = 2ksin(0/2), (75)

where # is the observation direction, k is the incident plane wave
propagation vector, with k£ = 2w/, A = wavelength, 6 is the scattering
angle, the angle between f and k,0 < 6 <, and ®7(K) and ®}(K) are
the spectra of the turbulent temperature variations and velocity,
respectively, given by equations (35) and (36). In equation (73), T is the
reference temperature outside the volume V., which has been chosen
equal to the mean temperature inside V,, as discussed in the previous
section. In equation (74), we have

kik; @Y (K) = kik; (5,,- - f(,-f(j) Go(K) = cos2(0/2)Go(K),  (76)
where, from equation (36),

Gy(K) = (7 N,v2a®/3p)z~F I}, |1 (maz, ), (77)
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and from equations (37) and (75)

z = Ka, = 2ka, sin(0/2). (78)

Equations (73) and (74) are valid for cases in which V. is the scattering
volume V;, or in which V; < V,,, but the scale length a, of V; satisfies




as >> aq, as discussed by Goedecke et al [1], and in equations (35) and
(36), N, is the mean number of turbules of scale length a, in V;.

The cross-sections in equations (73) and (74) are thus proportional to the
normalized spectral densities in equations (61) and (62), and figures 1 to 4
therefore reveal the crucial behavior of the scattering cross-sections

7, (F), d4(F) for the sample envelope function considered in section 2.4.3,
except for the factors of cos? 6 and cos? 6 cos?(6/2). It is important to note
that here, the boundaries of the inertial range of z or K translate into
boundaries of the inertial range of scattering angles (6min, fmax). For
example, for the Gaussian envelope function and the z~!/3 power law in
the inertial range, we have from equation (66) the temperature scattering

sin(fmin/2) = (3.19)/(2ka,), sin(fmax/2) ~ (0.49)(2mka,). (79)

Clearly, sin(6/2) < 1 for 0 < 6 < 7. So, if mka, is less than or
approximately equal to 0.25, the upper inertial range boundary is never
reached; that is, the power law spectrum obtains for scattering angles out
tof =m.

For example, suppose the following‘ reasonable values are chosen:
m=10"%a, = 10’2m, A = 0.314m — k ~ 20m~!, ka = 2 x 103. Then, from
equation (79)

$in(fmin/2) & 1.6 x 1073,  sin(fpax/2) ~ 2.5. (80)

So the power law spectrum would obtain for almost all angles; the effect
of the factor 1 — |5(K)|? in ®7(K) might dominate at angles as small as
this Omin. If ka, were much smaller, then 6,,;, would be observable, but not
Omax; if ka, were larger, then 6,,,, would be observable in principle, but
fmin would be too small to be observed.
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4. Summary and Discussion

In this report, we have established that a self-similar ensemble of localized
stationary turbules of arbitrary morphology and many different scale
lengths, but with random orientations and locations within a volume V,
predict spectral densities (37 (K), ®%; (K)) of the temperature and velocity
structure functions of the turbulence that have the following properties:

1. The spectra obey power laws (K ~Fr, K=F) in ranges
Kuin < K < Kpax, conventionally called the inertial ranges, which
may be different for 7 (K) than for 7;(K). The values (Py, P,) are
determined by choices of scaling exponents, and are independent of
turble morphology, as are the values of the spectral densities in the
inertial range. The boundaries (Kmin, Kmax) of the inertial range and
the behavior of the spectral densities for K outside the inertial range
are sensitive to turbule morphology.

2. The choice Pr = P, = 11/3, corresponding to the Kolmogorov
spectrum with a fractal size scaling ao+1/ao = constant, yields the
usual scaling relation vaa:‘,/ 3 = constant, and also requires that
packing fractions of turbules in V; are independent of scale length.
Expressions for the structure parameters (C2, CZ) of the Kolmogorov

spectra were obtained in terms of turbule model parameters.

3. The choice P, = P, = 0 yields a quasi-Gaussian spectrum for a
Gaussian ensemble average turbule morphology.

4. The first Born approximation far-field acoustic scattering
cross-sections due to the turbulent temperature and velocity
fluctuations exhibit a power law dependence (sin §/2)~Fr,

(sinf/ 2)~P in inertial ranges fmin < 6 < Omax determined by

(K min, Kmax), but deviate markedly from this dependence for
scattering angles 6 outside the inertial ranges. Depending primarily
on the values of the acoustic wavelength and the outer and inner
scale lengths of the turbulence, these deviations may not be
observable in practice, because the power law may be valid from
very small angles out to § = 180°.

There is quite a bit more that can be done with turbule models of
atmospheric turbulence. For example, treatment of cases in which the _
mean temperature in V; is not equal to the background reference :
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temperature can be done; this will yield a different power law for &7 (K)

" for small K than for large K. Also, consideration should be given to
situations that must often occur in practice, in which the scattering volume
Vs is smaller than some of the large-scale turbules, and/or the observation
distance is not in the far field of V;. These situations may change the
results significantly. They will also be considered in future reports.

The ultimate goal of the research reported in this series of reports is to
describe acoustic scattering and propagation in anisotropic and/or
inhomogeneous turbulence. It is hoped that a turbule approach will be
particularly appropriate for this description.
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